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Our objective is to predict pathological complete response (pCR) outcome to neoadjuvent chemotherapy
in breast cancer patients. We combine radiomic features with background parenchymal enhancement --
computed from standard-of DCE-MRI data from the ISPY-2 trial -- and model treatment outcome via
multivariable logistic regression. During training and testing, we demonstrate that models including BPE
alongside radiomic and clinical covariates yielded the highest AUC values among all tested regression
models, thus improving the prediction of pCR outcome.

IntroductionIntroduction
The ability to noninvasively predict pathological complete response (pCR) to neoadjuvant chemotherapy
(NAC) for breast cancer patients using standard-of-care MRI data would enable clinicians to determine
optimal treatment strategies based on expected response , potentially optimizing patient care and
surgical outcome. Thus, there is a push to develop predictive methods that rely on clinically available
data, such as dynamic contrast-enhanced (DCE) MRI data, with less barriers to clinical translation . The
field of radiomics aims to extract high-throughput features from clinical images that characterize tumor
biology, which can be subsequently leveraged for predicting clinical outcomes . Background
parenchymal enhancement (BPE), defined as the enhancement of healthy tissue in clinical DCE-MRI
scans, is a physiological feature shown to be associated with pCR outcome . Here we demonstrate an
improved ability to predict pCR outcome from a combination of radiomic features and BPE measures
using DCE-MRI data collected in the community setting.

MethodsMethods
Datasets. The BMMR2 dataset contains DCE-MRI images from 191 women recruited by the ACRIN
6698/ISPY-2 trial with annotated tumor regions of interest (ROIs). The data were split 60%/40% into
training and testing sets, respectively. A subset of 140 datasets (88 training and 52 testing) with readily
available data were analyzed in this work. Images from two visits were included for analysis: T0 (prior to
NAC) and T1 (early in treatment after three weeks of NAC). Hormone receptor (HR) and HER2 status,
MRI-measured longest diameter (LD) at T0, and pCR outcome (for the training set alone with 23 pCR and
65 non-pCR outcomes) were provided.
Image preprocessing. For feature extraction, all images (Figure 1A) were first bias-field corrected  and
resampled to 0.9×0.89×2.5 mm, which was the lowest available spatial resolution across all datasets.
Four standard kinetic maps were computed from these preprocessed images: wash-in slope (WIS), wash-
out slope (WOS), percent enhancement (PE), and signal enhancement ratio (SER). 
Feature extraction. Three types of radiomic texture features were calculated from the four kinetic maps
(Figure 1B) within the ROI. These types include the textures of the T0 SER maps, the differences between
the texture features from the four T1 kinetic maps and corresponding T0 maps, and the differences
between the registered T1 kinetic maps and corresponding T0 maps. In each case, we calculated the
features using the publicly available CaPTk software . We normalized and then harmonized the features
using OPNested ComBat , considering manufacturer, magnetic field strength, and through-plane
resolution as batch effects. Three established tumor size measures were also computed for both T0 and
T1 images: longest diameter, functional tumor volume, and clinical size.
BPE quantification. BPE was estimated quantitatively from the T0 precontrast and first postcontrast
phase images using a previously validated automated algorithm  (Figure 1C). The final BPE metrics for
each dataset were the median BPE (mBPE) across the ipsilateral breast as well as the ratio of volume of
tissue exhibiting BPE to whole breast volume (vBPE). The mBPE and vBPE distributions across datasets
were transformed to the standard normal distribution (mean 0, standard deviation 1).
Statistical analysis. Principal component analysis was applied to the extracted features, resulting in two
primary principal components (PC1 and PC2). We modeled pCR outcome via multivariable logistic
regression (Figure 1D), considering combinations of up to five covariates from the following: HR status,
HER2 status, PC1, PC2, mBPE, and vBPE. We evaluated the models on the training data via cross-
validated area under the receiver operating characteristic curve (AUC) (5-fold, 200 repetitions). The
Kolmogorov-Smirnov (KS) two-sample test was used to determine similarity in AUC distributions across
models and replicates at a significance level of p<0.05.

ResultsResults
Example of pre- and post-contrast images with resulting BPE volume maps are displayed in Figure 2 for a
pCR and non-pCR subject, demonstrating more diffuse BPE volume throughout the breast in the pCR
case. In Figure 3, Tables A and B report the mean AUCs from model performance on the model-building
and held-out folds, respectively. On the model-building folds, the model parameterized by PC1, PC2, HR,
HER2, and mBPE performed the best with AUC=0.83. On the held-out folds, the model parameterized by
PC1, HR, HER2, and mBPE yielded the highest AUC of 0.78. For these two best-performing models, Table
C reports the p-values from the KS test comparing the AUC distributions across models. Combining
radiomics features with median BPE as a covariate yielded a significantly different AUC distribution on
the held-out fold (p<0.05), when compared to nested models that excluded mBPE. The vBPE covariate
did not significantly improve performance.

Discussion and ConclusionDiscussion and Conclusion
In this work, we demonstrated an increased performance in predicting pCR outcome in breast NAC by
combining radiomic features with BPE. Combining mBPE with clinical and radiomic covariates yielded the
highest AUC values among all seven regression models, thus improving the prediction of pCR outcome.
Interestingly, vBPE did not improve model performance, suggesting that the volume of enhancing
parenchyma is less predictive than the value of BPE itself. Ongoing work involves expanding the
proposed analysis to all 191 patients in the ISPY2 dataset. Additionally, we are working to incorporate
BPE measures from both T0 and T1 images as well as changes in BPE measures across imaging visits as
additional covariates.
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Figure 1. Proposed predictionFigure 1. Proposed prediction
pipeline.pipeline. (A) The pre- and post-

contrast images from the DCE-MRI
series are collected and

preprocessed. (B) Four kinetic maps
are computed from the DCE-MRI
data, and radiomic features are

extracted using the CaPTk software.
(C) The median BPE value for the

ipsilateral breast is computed from
the precontrast and first

postcontrast phase from the DCE-
MRI series. (D) Two principal

components (PC1 and PC2) are
computed from the final radiomic

features and included as covariates
along with BPE measures (mBPE

and vBPE) in a series of regression
models.

Figure 2. Imaging data and BPEFigure 2. Imaging data and BPE
for non-PCR and pCR examplefor non-PCR and pCR example

datasetsdatasets. (A)-(C) From left to right,
these panels display the

precontrast, first postcontrast
phase, and BPE volume map of a
subject with a non-pCR outcome.

(D)-(F) These images are analogous
to those in the preceding three

panels but instead correspond to a
patient that had a pCR outcome. (F)
shows more diffuse BPE compared

to (C).

Figure 3. Tables reporting modelFigure 3. Tables reporting model
performance.performance. (A) The performance
of the models for cases within the
model-building folds are evaluated
using the mean AUC across all 200
replicates (and standard deviation

as STD). The highest AUC value
(bolded) corresponds to Model f,
which includes mBPE along with

four other covariates. (B) The
performance of the four models on

the held-out folds are similarly
reported, where Model b

outperforms the others. (C) The
Kolmogorov-Smirnov was used to

assess differences in the AUC
distributions across all replicates

between models. (*) indicates p<10
.
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